Numerical optimisation of superplastic deformation

N. D. THEODORE*, K. A. PADMANABHAN

Department of Metallurgical Engineering, Indian Institute of Technology, Madras – 600 036, India

Based on an approach due to Padmanabhan and Davies, a multi-dimensional regression analysis has been developed which predicts the superplastic deformation parameters of m (the strain-rate sensitivity index) and K (the strength parameter) as functions of strain rate, grain size and temperature. Further analysis enables the optimisation of the operating conditions (for minimum power consumption) through a prediction of the external load and power consumption using the predicted values of m and K. The procedure has been validated by applying it for the analysis of the experimental data pertaining to the tin-lead eutectic alloy. It has been pointed out that the technique could be useful for problems (not necessarily in the area of superplasticity) where a particular parameter depends on a number of independent variables.

1. Introduction

"Micro-grained" or "structural" superplasticity is a well-established phenomenon [1–4]. Metallic materials possessing a stable, ultra-fine grain size (usually less than 10 μ m) exhibit extremely large deformation of many hundreds of per cent when subjected to a small tensile load within a certain strain rate interval and a deformation temperature in excess of about $0.4T_m$ (where T_m is the melting point on the absolute scale). A number of commercial applications that make use of superplastic forming have already been identified [2, 5–8].

Isothermal superplastic deformation is often represented by an equation [1, 2]

$$\sigma = K \dot{\varepsilon}^m \tag{1}$$

where σ is the applied stress, $\dot{\varepsilon}$ is the strain rate, K (the strength parameter that equals the flow stress at a strain rate of unity) and m (the strain-rate sensitivity index) are material parameters that depend strongly on strain rate ($\dot{\varepsilon}$), grain size (L) and temperature (T). For superplastic flow, 0.3 < m < 1 and the resistance to necking increases with m [1, 2].

On the other hand, contrary to experimental results many analyses of superplastic forming treat m and Kas constants. But in a more realistic model the internal variations in m and K with \dot{e} , L and T have to be taken into account, while calculating the forming load, power consumption etc. Then, reliable optimisation of the operating conditions will become possible. To this end, a numerical procedure based on multi-dimensional regression analysis is presented in this paper. This technique can be applied to other areas of research also.

2. Analysis and results

The basic approach was presented by Padmanabhan and Davies [9]. Although the procedure outlined was general, as an example these authors treated the three dimensional case when m and K were functions of $\dot{\varepsilon}$ and L. In this paper the four dimensional situation in which $m = f_1$ ($\dot{\varepsilon}$, L, T) and $K = f_2$ ($\dot{\varepsilon}$, L, T) is analysed (By induction, the technique can be generalised for an *n*-dimensional space, where a given dependent variable is influenced by (n - 1) independent variables.)

The strain rate, measured in s^{-1} , the grain size, measured in μ m, and the temperature in degrees Kelvin are transformed to variables X, Y, Z by the equations

$$X = -\log_{10} \dot{\epsilon}$$

$$Y = L$$
(2)

$$Z = \left(\frac{T - 273}{100}\right)$$

The variables are thus limited to positive values of a similar order of magnitude and this will minimise the computational errors [10].

It is assumed that m can be represented by a polynomial of the form

$$m = \sum_{r,s,t=0}^{r+s+t=N} A_{rst} X' Y^s Z' + \varepsilon$$
 (3)

where A_{rst} are numerical coefficients and ε is a random error term. This is an equation of degree N = r + s + t. It is assumed that the standard deviation is the same for all observations and the random error term

^{*}Present address: Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.

is set as zero. The predicted value of m is then given by

$$m_{\text{predicted}} = \sum_{r,s,t=0}^{r+s+t=N} A_{rst} X^r Y^s Z^t$$
(4)

The maximum possible degree of the prediction equation is limited by the number of experimental observations available. Assuming n experimental values for m, each value corresponding to a set of X $(= -\log_{10}\dot{\epsilon}), Y(=L), Z(=(T - 273)/100)$ the coefficients A_{rst} in Equation 4 can be uniquely determined, if the number of coefficients is not greater than n. Data are required in the form of experimental m values for different sets of strain rate, grain size and temperature.

Let m_{ijk} denote the *m* value corresponding to a set of values $X = X_i$, $Y = Y_i$, $Z = Z_k$. Then, Equation 4 becomes

$$(m_{ijk})_{\text{predicted}} = \sum_{r.s.t=0}^{r+s+t=N} A_{rst} X_i^r Y_j^s Z_k^t$$
(5)

with the constraining conditions $r \leq C - 1$, $s \leq$ D - 1, $t \leq E - 1$, $r + s + t \leq N$, where C is the number of observations of X for each Y-Z combination, D is the number of Y values for each Z value and E is the number of Z values available. A_{rst} are evaluated following the least squares procedure. The sum of the squares of the residuals is a function of the

TABLE I (continued)

Temperature $L(\mu m)$ $\dot{e}(s^{-1})$ m' $\sigma(psi)^{k}$ Temperature $L(\mu m)$ $\dot{e}(s^{-1})$ m' σ 26 7.5 \pm 0.8 3.18 $\times 10^{-3}$ 0.22 3550 120 5.5 \pm 0.6 7.46 $\times 10^{-4}$ 0.49 120 5.5 \pm 0.6 1.46 $\times 10^{-4}$ 0.45 26 7.5 \pm 0.8 2.69 $\times 10^{-4}$ 0.15 5110 120 5.5 \pm 0.6 1.46 $\times 10^{-3}$ 0.54 26 7.5 \pm 0.8 0.69 $\times 10^{-4}$ 0.15 5110 120 5.5 \pm 0.6 1.46 $\times 10^{-3}$ 0.54 26 7.5 \pm 0.8 3.78 $\times 10^{-3}$ 0.31 5780 120 5.5 \pm 0.6 1.16 $\times 10^{-3}$ 0.31 120 26 7.5 \pm 0.8 3.18 $\times 10^{-3}$ 0.23 0.31 170 5.5 \pm 0.6 7.11 $\times 10^{-3}$ 0.33 60 7.5 \pm 0.8 1.55 $\times 10^{-1}$ 0.23 2.310 170 5.5 \pm 0.6 7.11 $\times 10^{-3}$ 0.33 60 7.5 \pm 0.8 0.33 7.60 $\times 10^{-3}$ 0.33 <th>TABLE I EX</th> <th>sperimental da</th> <th>ta for the tin-lead</th> <th>d eutectic</th> <th>alloy [11]</th> <th>TABLE I (c</th> <th>ontinued)</th> <th></th> <th></th> <th></th>	TABLE I EX	sperimental da	ta for the tin-lead	d eutectic	alloy [11]	TABLE I (c	ontinued)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Temperature (T-273)	L (μm)	έ (s ⁻¹)	ʻm'	σ (psi)*	Temperature (T-273)	L (µm)	έ (s ⁻¹)	ʻm'	σ. (psi)*
26 7.5 0.8 7.70 100 ⁻⁵ 10.9 400 ⁵ 120 5.5 0.6 2.68 10 ⁻⁴ 0.65 12 26 7.5 0.8 2.85 10 ⁻⁴ 0.17 4330 120 5.5 0.6 4.64 10 ⁻⁴ 0.46 0.39 11 26 7.5 0.8 1.31 10 ⁻³ 0.13 5780 120 5.5 0.6 4.64 10 ⁻⁴ 0.46 0.39 11 26 7.5 0.8 6.37 10 ⁻³ 0.08 6730 10 ⁻⁵ 5.4 0.6 7.98 10 ⁻⁵ 0.45 60 7.5 0.8 6.37 10 ⁻⁵ 0.24 1810 170 5.5 0.6 1.55 10.45 1.6 1.55 1.04 0.63 1.6 1.18 10 ⁻⁵ 0.45 1.6 1.18 1.04 0.63 1.6 1.18 1.04 0.63 1.6 1.18 1.04 0.63 1.6 1.18 1.05 0.6 1.18 1.05 0.6 1.18 1.05	26	7.5 + 0.8	3.18×10^{-5}	0.31	2780	120	5.5 ± 0.6	7.46×10^{-5}	0.49	290
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	7.5 + 0.8	7.70×10^{-5}	0.22	3550	120	5.5 + 0.6	1.46×10^{-4}	0.65	390
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	7.5 + 0.8	1.55×10^{-4}	0.19	4005	120	5.5 + 0.6	2.68×10^{-4}	0.54	560
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	$.7.5 \pm 0.8$	2.85×10^{-4}	0.17	4530	120	5.5 + 0.6	6.49×10^{-4}	0.46	860
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	7.5 ± 0.8	6.69×10^{-4}	0.15	5110	120	5.5 + 0.6	1.16×10^{-3}	0.39	1160
26 7.5 ± 0.8 2.65×10^{-3} 0.11 6.40 120 5.5 ± 0.6 4.99×10^{-3} 0.22 160 26 7.5 ± 0.8 6.37×10^{-3} 0.24 1810 170 5.5 ± 0.6 1.55×10^{-4} 0.68 60 7.5 ± 0.8 1.55×10^{-4} 0.22 2100 170 5.5 ± 0.6 1.55×10^{-4} 0.68 60 7.5 ± 0.8 1.55×10^{-4} 0.21 2100 170 5.5 ± 0.6 1.90×10^{-3} 0.88 60 7.5 ± 0.8 6.69×10^{-4} 0.11 4005 170 5.5 ± 0.6 1.17×10^{-2} 0.38 1.05 60 7.5 ± 0.8 2.56×10^{-3} 0.11 4005 170 5.5 ± 0.6 1.17×10^{-2} 0.38 1 60 7.5 ± 0.8 2.36×10^{-3} 0.48 250 10^{-2} 0.58 0.29 110 7.5 ± 0.8 0.32×10^{-5} 0.60 570 26 2.0 ± 0.2 </td <td>26</td> <td>7.5 ± 0.8</td> <td>1.31×10^{-3}</td> <td>0.13</td> <td>5780</td> <td>120</td> <td>5.5 + 0.6</td> <td>2.26×10^{-3}</td> <td>0.30</td> <td>1400</td>	26	7.5 ± 0.8	1.31×10^{-3}	0.13	5780	120	5.5 + 0.6	2.26×10^{-3}	0.30	1400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	7.5 + 0.8	2.56×10^{-3}	0.11	6140	120	5.5 + 0.6	4.99×10^{-3}	0.22	1670
$ \begin{array}{c} 1 \\ 60 \\ 60 \\ 7.5 \pm 0.8 \\ 7.5 \pm 0.8 \\ 7.7 \times 10^{-5} \\ 0.28 \\ 210 \\ 7.5 \pm 0.8 \\ 7.5 \pm 0.8 \\ 7.5 \pm 0.8 \\ 1.5 \times 10^{-4} \\ 0.28 \\ 210 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-4} \\ 0.21 \\ 210 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-4} \\ 0.21 \\ 210 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-4} \\ 0.21 \\ 211 \\ 0.5 \pm 0.6 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-4} \\ 0.21 \\ 211 \\ 0.5 \pm 0.6 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-4} \\ 0.21 \\ 211 \\ 0.5 \pm 0.6 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-4} \\ 0.21 \\ 211 \\ 0.5 \pm 0.6 \\ 7.5 \pm 0.8 \\ 2.5 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-3} \\ 0.58 \\ 2.5 \pm 0.6 \\ 1.17 \times 10^{-4} \\ 0.46 \\ 1.17 \times 10^{-2} \\ 0.38 \\ 1.17 \times 10^{-4} \\ 0.46 \\ 1.17 \times 10^{-4} \\ 0.47 \\ 1.11 \times 10^{-4} \\ $	26	7.5 + 0.8	6.37×10^{-3}	0.08	6730	1.50		5 00 10-5	o 15	= 0
						170	5.5 ± 0.6	7.93×10^{-3}	0.45	70
	60	7.5 ± 0.8	3.18×10^{-3}	0.24	1810	170	5.5 ± 0.6	1.55×10^{-4}	0.58	100
	60	7.5 ± 0.8	7.70×10^{-3}	0.28	2310	170	5.5 ± 0.6	2.85×10^{-4}	0.63	150
	60	7.5 ± 0.8	1.55×10^{-4}	0.25	2780	170	5.5 ± 0.6	7.11×10^{-4}	0.62	260
	60	7.5 ± 0.8	2.85×10^{-4}	0.21	3140	170	5.5 ± 0.6	1.39×10^{-3}	0.58	420
	60	7.5 ± 0.8	6.69×10^{-4}	0.14	3770	170	5.5 ± 0.6	2.72×10^{-3}	0.53	560
	60	7.5 ± 0.8	1.31×10^{-3}	0.11	4005	170	5.5 ± 0.6	6.37×10^{-3}	0.46	860
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	7.5 ± 0.8	2.56×10^{-3}	0.08	4260	170	5.5 ± 0.6	1.17×10^{-2}	0.38	1160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	7.5 ± 0.8	6.37×10^{-3}	0.07	4530	26	2.0 ± 0.2	2.99×10^{-5}	0.29	390
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	3.28×10^{-5}	0.60	570	26	2.0 ± 0.2	7.46×10^{-5}	0.41	530
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	7.93×10^{-5}	0.44	870	26	2.0 ± 0.2 2.0 + 0.2	1.37×10^{-4}	0.47	710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	1.55×10^{-4}	0.37	1180	26	2.0 ± 0.2	2.77×10^{-4}	0.50	970
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	3.03×10^{-4}	0.31	1510	26	2.0 ± 0.2	6.29×10^{-4}	0.51	1490
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	7.11×10^{-4}	0.26	1810	26	2.0 ± 0.2	1.31×10^{-3}	0.48	2140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	1.39×10^{-3}	0.23	2180	26	20 ± 0.2	2.33×10^{-3}	0.44	2910
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	7.5 ± 0.8	2.72×10^{-3}	0.20	2610	26	2.0 ± 0.2 2.0 ± 0.2	4.70×10^{-3}	0.37	3710
1707.5 \pm 0.83.18 \times 10 ⁻⁵ 0.5860682.0 \pm 0.23.18 \times 10 ⁻³ 0.371707.5 \pm 0.87.93 \times 10 ⁻⁵ 0.5890682.0 \pm 0.27.70 \times 10 ⁻⁵ 0.431701707.5 \pm 0.81.55 \times 10 ⁻⁴ 0.60140682.0 \pm 0.22.85 \times 10 ⁻⁴ 0.491707.5 \pm 0.82.85 \times 10 ⁻⁴ 0.62210682.0 \pm 0.22.85 \times 10 ⁻⁴ 0.491707.5 \pm 0.87.11 \times 10 ⁻⁴ 0.61350682.0 \pm 0.22.85 \times 10 ⁻⁴ 0.511707.5 \pm 0.87.11 \times 10 ⁻⁴ 0.61350682.0 \pm 0.22.48 \times 10 ⁻³ 0.511707.5 \pm 0.87.14 \times 10 ⁻³ 0.54730682.0 \pm 0.22.48 \times 10 ⁻³ 0.50141707.5 \pm 0.89.47 \times 10 ⁻³ 0.371420902.0 \pm 0.23.18 \times 10 ⁻⁵ 0.44265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.312410902.0 \pm 0.23.18 \times 10 ⁻⁴ 0.45265.5 \pm 0.67.46 \times 10 ⁻⁵ 0.312410902.0 \pm 0.22.85 \times 10 ⁻⁴ 0.45265.5 \pm 0.67.11 \times 10 ⁻⁴ 0.174980902.0 \pm 0.22.85 \times 10 ⁻⁴ 0.45265.5 \pm 0.67.11 \times 10 ⁻⁴ 0.174980902.0 \pm 0.22.48 \times 10 ⁻³ 0.520.5265.5 \pm 0.67.18 \times 10 ⁻³ 0.145620902.0 \pm	120	7.5 ± 0.8	6.37×10^{-3}	0.15	2950	20	210 1 0.2		0.07	5710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						68	2.0 ± 0.2	3.18×10^{-5}	0.37	180
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	170	7.5 ± 0.8	3.18×10^{-5}	0.58	60	68	2.0 ± 0.2	7.70×10^{-5}	0.43	250
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	170	7.5 ± 0.8	7.93×10^{-5}	0.58	90	68	$2.0~\pm~0.2$	1.46×10^{-4}	0.46	320
1707.5 ± 0.8 2.85 $\times 10^{-4}$ 0.62210682.0 ± 0.2 6.90 $\times 10^{-4}$ 0.511707.5 ± 0.8 7.11 $\times 10^{-4}$ 0.61350682.0 ± 0.2 1.35 $\times 10^{-3}$ 0.51511707.5 ± 0.8 1.39 $\times 10^{-3}$ 0.59540682.0 ± 0.2 2.48 $\times 10^{-3}$ 0.50141707.5 ± 0.8 2.56 $\times 10^{-3}$ 0.54730682.0 ± 0.2 2.48 $\times 10^{-3}$ 0.48201707.5 ± 0.8 9.47 $\times 10^{-3}$ 0.371420902.0 ± 0.2 3.18 $\times 10^{-5}$ 0.4420265.5 ± 0.6 3.18 $\times 10^{-5}$ 0.273070902.0 ± 0.2 1.46 $\times 10^{-4}$ 0.4520265.5 ± 0.6 1.55 $\times 10^{-4}$ 0.243680902.0 ± 0.2 1.35 $\times 10^{-3}$ 0.5260265.5 ± 0.6 7.11 $\times 10^{-4}$ 0.214410902.0 ± 0.2 2.48 $\times 10^{-3}$ 0.5260265.5 ± 0.6 7.11 $\times 10^{-4}$ 0.174980902.0 ± 0.2 2.48 $\times 10^{-3}$ 0.5260265.5 ± 0.6 7.39 $\times 10^{-3}$ 0.145620902.0 ± 0.2 2.48 $\times 10^{-3}$ 0.5260265.5 ± 0.6 5.99 $\times 10^{-3}$ 0.1067401202.0 ± 0.2 3.09 $\times 10^{-5}$ 0.51120265.5 ± 0.6 3.18 $\times 10^{-5}$ 0.3511601202.0 ± 0.2 7.46 $\times 10^{-3}$ 0.51120<	170	7.5 ± 0.8	1.55×10^{-4}	0.60	140	68	$2.0~\pm~0.2$	2.85×10^{-4}	0.49	470
170 7.5 ± 0.8 7.11×10^{-4} 0.61 350 68 2.0 ± 0.2 1.35×10^{-3} 0.51 68 170 7.5 ± 0.8 1.39×10^{-3} 0.59 540 68 2.0 ± 0.2 2.48×10^{-3} 0.50 14 170 7.5 ± 0.8 2.56×10^{-3} 0.54 730 68 2.0 ± 0.2 2.48×10^{-3} 0.50 14 26 5.5 ± 0.6 3.18×10^{-5} 0.31 2410 90 2.0 ± 0.2 3.18×10^{-5} 0.44 26 5.5 ± 0.6 7.46×10^{-5} 0.27 3070 90 2.0 ± 0.2 1.46×10^{-4} 0.45 26 5.5 ± 0.6 1.55×10^{-4} 0.24 3680 90 2.0 ± 0.2 1.46×10^{-4} 0.45 26 5.5 ± 0.6 7.11×10^{-4} 0.21 4410 90 2.0 ± 0.2 1.35×10^{-4} 0.47 26 5.5 ± 0.6 3.03×10^{-4} 0.21 4410 90 2.0 ± 0.2 1.35×10^{-3} 0.52 26 5.5 ± 0.6 7.11×10^{-4} 0.17 4980 90 2.0 ± 0.2 1.35×10^{-3} 0.52 26 5.5 ± 0.6 5.99×10^{-3} 0.14 5620 90 2.0 ± 0.2 3.09×10^{-5} 0.51 26 5.5 ± 0.6 5.99×10^{-3} 0.12 5970 90 2.0 ± 0.2 3.09×10^{-5} 0.51 26 5.5 ± 0.6 3.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 3.09×10^{-5} <	170	$7.5~\pm~0.8$	2.85×10^{-4}	0.62	210	68	$2.0~\pm~0.2$	6.90×10^{-4}	0.51	710
170 7.5 ± 0.8 1.39×10^{-3} 0.59 540 68 2.0 ± 0.2 2.48×10^{-3} 0.50 1420 170 7.5 ± 0.8 2.56×10^{-3} 0.54 730 68 2.0 ± 0.2 5.64×10^{-3} 0.48 20 170 7.5 ± 0.8 9.47×10^{-3} 0.37 1420 90 2.0 ± 0.2 3.18×10^{-5} 0.44 26 5.5 ± 0.6 3.18×10^{-5} 0.31 2410 90 2.0 ± 0.2 3.18×10^{-5} 0.44 26 5.5 ± 0.6 7.46×10^{-5} 0.27 3070 90 2.0 ± 0.2 1.46×10^{-4} 0.45 26 5.5 ± 0.6 1.55×10^{-4} 0.24 3680 90 2.0 ± 0.2 1.46×10^{-4} 0.45 26 5.5 ± 0.6 3.03×10^{-4} 0.21 4410 90 2.0 ± 0.2 1.35×10^{-4} 0.52 26 5.5 ± 0.6 7.11×10^{-4} 0.17 4980 90 2.0 ± 0.2 1.35×10^{-3} 0.52 26 5.5 ± 0.6 1.39×10^{-3} 0.12 5970 90 2.0 ± 0.2 3.09×10^{-5} 0.51 26 5.5 ± 0.6 3.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 3.09×10^{-5} 0.51 26 5.5 ± 0.6 3.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 3.09×10^{-5} 0.51 26 5.5 ± 0.6 3.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 1.46×10^{-4} 0.52	170	7.5 ± 0.8	7.11×10^{-4}	0.61	350	68	2.0 ± 0.2	1.35×10^{-3}	0.51	970
1707.5 \pm 0.82.56 \times 10 ⁻³ 0.54730682.0 \pm 0.25.64 \times 10 ⁻³ 0.48201707.5 \pm 0.89.47 \times 10 ⁻³ 0.371420902.0 \pm 0.23.18 \times 10 ⁻⁵ 0.44265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.273070902.0 \pm 0.27.70 \times 10 ⁻⁵ 0.43265.5 \pm 0.61.55 \times 10 ⁻⁴ 0.243680902.0 \pm 0.21.46 \times 10 ⁻⁴ 0.452.6265.5 \pm 0.61.55 \times 10 ⁻⁴ 0.214410902.0 \pm 0.22.85 \times 10 ⁻⁴ 0.472.6265.5 \pm 0.67.11 \times 10 ⁻⁴ 0.214410902.0 \pm 0.22.85 \times 10 ⁻⁴ 0.472.6265.5 \pm 0.67.11 \times 10 ⁻⁴ 0.214410902.0 \pm 0.22.48 \times 10 ⁻³ 0.520.43265.5 \pm 0.67.11 \times 10 ⁻⁴ 0.174980902.0 \pm 0.22.48 \times 10 ⁻³ 0.520.43265.5 \pm 0.61.39 \times 10 ⁻³ 0.145620902.0 \pm 0.22.48 \times 10 ⁻³ 0.520.5265.5 \pm 0.65.99 \times 10 ⁻³ 0.1067401202.0 \pm 0.23.09 \times 10 ⁻⁵ 0.45265.5 \pm 0.65.99 \times 10 ⁻³ 0.1067401202.0 \pm 0.27.46 \times 10 ⁻⁵ 0.51265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.4016701202.0 \pm 0.21.46 \times 10 ⁻⁴ 0.52265.5 \pm 0.63.18 \times 10 ⁻	170	7.5 ± 0.8	1.39×10^{-3}	0.59	540	68	$2.0~\pm~0.2$	2.48×10^{-3}	0.50	1400
1707.5 \pm 0.89.47 \times 10 ⁻³ 0.371420902.0 \pm 0.23.18 \times 10 ⁻⁵ 0.44265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.312410902.0 \pm 0.27.70 \times 10 ⁻⁵ 0.43265.5 \pm 0.67.46 \times 10 ⁻⁵ 0.273070902.0 \pm 0.21.46 \times 10 ⁻⁴ 0.452265.5 \pm 0.61.55 \times 10 ⁻⁴ 0.243680902.0 \pm 0.22.85 \times 10 ⁻⁴ 0.472265.5 \pm 0.63.03 \times 10 ⁻⁴ 0.214410902.0 \pm 0.22.85 \times 10 ⁻⁴ 0.472265.5 \pm 0.67.11 \times 10 ⁻⁴ 0.174980902.0 \pm 0.21.35 \times 10 ⁻³ 0.520265.5 \pm 0.61.39 \times 10 ⁻³ 0.145620902.0 \pm 0.22.48 \times 10 ⁻³ 0.520265.5 \pm 0.62.56 \times 10 ⁻³ 0.125970902.0 \pm 0.25.47 \times 10 ⁻³ 0.5111265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.3511601202.0 \pm 0.23.09 \times 10 ⁻⁵ 0.45265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.4016701202.0 \pm 0.23.09 \times 10 ⁻⁵ 0.45265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.4016701202.0 \pm 0.21.46 \times 10 ⁻⁴ 0.52265.5 \pm 0.63.18 \times 10 ⁻⁴ 0.3621301202.0 \pm 0.21.46 \times 10 ⁻⁴ 0.53265.5 \pm 0.63.18 \times 10 ⁻⁵ 0.40 <td< td=""><td>170</td><td>7.5 ± 0.8</td><td>2.56×10^{-3}</td><td>0.54</td><td>730</td><td>68</td><td>2.0 ± 0.2</td><td>5.64×10^{-3}</td><td>0.48</td><td>2020</td></td<>	170	7.5 ± 0.8	2.56×10^{-3}	0.54	730	68	2.0 ± 0.2	5.64×10^{-3}	0.48	2020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	7.5 ± 0.8	9.47×10^{-3}	0.37	1420	90	20 ± 02	3.18×10^{-5}	0.44	110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	55 ± 0.6	3.18×10^{-5}	0.31	2410	90	2.0 ± 0.2 2.0 + 0.2	7.70×10^{-5}	0.43	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	5.5 ± 0.6	7.46×10^{-5}	0.27	3070	90	2.0 ± 0.2 2.0 + 0.2	1.46×10^{-4}	0.45	220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	5.5 ± 0.6	1.55×10^{-4}	0.24	3680	90	2.0 ± 0.2 2.0 ± 0.2	2.85×10^{-4}	0.47	300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	5.5 ± 0.6	3.03×10^{-4}	0.21	4410	90	2.0 ± 0.2 2.0 + 0.2	6.90×10^{-4}	0.50	470
265.5 \pm 0.61.39 \times 10 ⁻³ 0.115620902.0 \pm 0.22.48 \times 10 ⁻³ 0.5292265.5 \pm 0.62.56 \times 10 ⁻³ 0.125970902.0 \pm 0.22.48 \times 10 ⁻³ 0.5112265.5 \pm 0.65.99 \times 10 ⁻³ 0.1067401202.0 \pm 0.23.09 \times 10 ⁻⁵ 0.45605.5 \pm 0.63.18 \times 10 ⁻⁵ 0.3511601202.0 \pm 0.27.46 \times 10 ⁻⁵ 0.51605.5 \pm 0.68.18 \times 10 ⁻⁵ 0.4016701202.0 \pm 0.21.46 \times 10 ⁻⁴ 0.52605.5 \pm 0.61.55 \times 10 ⁻⁴ 0.3621301202.0 \pm 0.22.68 \times 10 ⁻⁴ 0.53605.5 \pm 0.63.03 \times 10 ⁻⁴ 0.2927201202.0 \pm 0.21.23 \times 10 ⁻³ 0.55605.5 \pm 0.61.31 \times 10 ⁻³ 0.1736801202.0 \pm 0.22.40 \times 10 ⁻³ 0.55605.5 \pm 0.61.31 \times 10 ⁻³ 0.1541501202.0 \pm 0.22.40 \times 10 ⁻³ 0.55605.5 \pm 0.61.31 \times 10 ⁻³ 0.1736801202.0 \pm 0.22.40 \times 10 ⁻³ 0.573.65605.5 \pm 0.65.99 \times 10 ⁻³ 0.1541501202.0 \pm 0.25.47 \times 10 ⁻³ 0.593.55605.5 \pm 0.65.99 \times 10 ⁻³ 0.1541501202.0 \pm 0.25.47 \times 10 ⁻³ 0.593.59605.5 \pm 0.65.99 \times 10 ⁻³ 0.15 <td>26</td> <td>5.5 ± 0.6</td> <td>7.11×10^{-4}</td> <td>0.17</td> <td>4980</td> <td>90</td> <td>2.0 ± 0.2</td> <td>1.35×10^{-3}</td> <td>0.52</td> <td>630</td>	26	5.5 ± 0.6	7.11×10^{-4}	0.17	4980	90	2.0 ± 0.2	1.35×10^{-3}	0.52	630
265.5 \pm 0.62.56 \times 10 ⁻³ 0.115970902.0 \pm 0.25.47 \times 10 ⁻³ 0.5111265.5 \pm 0.65.99 \times 10 ⁻³ 0.1067401202.0 \pm 0.25.47 \times 10 ⁻³ 0.5111605.5 \pm 0.63.18 \times 10 ⁻⁵ 0.3511601202.0 \pm 0.27.46 \times 10 ⁻⁵ 0.45605.5 \pm 0.68.18 \times 10 ⁻⁵ 0.4016701202.0 \pm 0.27.46 \times 10 ⁻⁴ 0.52605.5 \pm 0.61.55 \times 10 ⁻⁴ 0.3621301202.0 \pm 0.22.68 \times 10 ⁻⁴ 0.53605.5 \pm 0.63.03 \times 10 ⁻⁴ 0.2927201202.0 \pm 0.26.69 \times 10 ⁻⁴ 0.53605.5 \pm 0.67.11 \times 10 ⁻⁴ 0.2132601202.0 \pm 0.22.40 \times 10 ⁻³ 0.55605.5 \pm 0.61.31 \times 10 ⁻³ 0.1736801202.0 \pm 0.22.40 \times 10 ⁻³ 0.57605.5 \pm 0.65.99 \times 10 ⁻³ 0.1541501202.0 \pm 0.25.47 \times 10 ⁻³ 0.593.55605.5 \pm 0.65.99 \times 10 ⁻³ 0.1541501202.0 \pm 0.25.47 \times 10 ⁻³ 0.593.59605.5 \pm 0.65.99 \times 10 ⁻³ 0.1541501202.0 \pm 0.25.47 \times 10 ⁻³ 0.593.59605.5 \pm 0.65.99 \times 10 ⁻³ 0.1541501202.0 \pm 0.25.47 \times 10 ⁻³ 0.593.59605.5 \pm 0.65.99 \times 10 ⁻³ </td <td>26</td> <td>5.5 ± 0.6</td> <td>1.39×10^{-3}</td> <td>0.14</td> <td>5620</td> <td>90</td> <td>2.0 ± 0.2 2.0 ± 0.2</td> <td>2.48×10^{-3}</td> <td>0.52</td> <td>910</td>	26	5.5 ± 0.6	1.39×10^{-3}	0.14	5620	90	2.0 ± 0.2 2.0 ± 0.2	2.48×10^{-3}	0.52	910
26 5.5 ± 0.6 5.99×10^{-3} 0.10 6740 120 2.0 ± 0.2 3.09×10^{-5} 0.45 60 5.5 ± 0.6 3.18×10^{-5} 0.35 1160 120 2.0 ± 0.2 3.09×10^{-5} 0.45 60 5.5 ± 0.6 3.18×10^{-5} 0.35 1160 120 2.0 ± 0.2 7.46×10^{-5} 0.51 60 5.5 ± 0.6 8.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 7.46×10^{-4} 0.52 60 5.5 ± 0.6 1.55×10^{-4} 0.36 2130 120 2.0 ± 0.2 2.68×10^{-4} 0.53 60 5.5 ± 0.6 3.03×10^{-4} 0.29 2720 120 2.0 ± 0.2 6.69×10^{-4} 0.53 60 5.5 ± 0.6 7.11×10^{-4} 0.21 3260 120 2.0 ± 0.2 1.23×10^{-3} 0.55 60 5.5 ± 0.6 1.31×10^{-3} 0.17 3680 120 2.0 ± 0.2 2.40×10^{-3} 0.57 60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 755 ± 0.6 5.99×10^{-3} 0.13 4690 $*$ $*$ 2.0 ± 0.2 5.47×10^{-3} 0.59 755 ± 0.6 3.18×10^{-5} 0.26 200 $1.26 \times 0.26 \times 10^{-5}$ 111 110^{-5} 0.59 120 2.0 ± 0.2 5.47×10^{-3} 0.59 110^{-5} 0.26 200 <	26	5.5 ± 0.6	2.56×10^{-3}	0.12	5970	90	2.0 ± 0.2 2.0 ± 0.2	5.47×10^{-3}	0.51	1320
10^{-1} 10^{-5} 0.10^{-5} 0.10^{-5} 0.10^{-5} 0.10^{-5} 0.45^{-5} 120^{-5} 2.0 ± 0.2 3.09×10^{-5} 0.45^{-5} 120^{-5} 2.0 ± 0.2 3.09×10^{-5} 0.45^{-5} 120^{-5} 2.0 ± 0.2 7.46×10^{-5} 0.51^{-5} 120^{-5} 2.0 ± 0.2 7.46×10^{-5} 0.51^{-5} 120^{-5} 2.0 ± 0.2 1.46×10^{-4} 0.52^{-5} 120^{-5} 2.0 ± 0.2 1.46×10^{-4} 0.52^{-5} 120^{-5} 2.0 ± 0.2 2.68×10^{-4} 0.53^{-5} 120^{-5} 2.0 ± 0.2 2.68×10^{-4} 0.53^{-5} 120^{-5} 2.0 ± 0.2 2.68×10^{-4} 0.53^{-5} 120^{-5} 2.0 ± 0.2 2.0 ± 0.2 2.68×10^{-4} 0.53^{-5} 120^{-5} $2.0 \pm 0.2^{-5} \pm 0.6^{-5}$ 1.31×10^{-3} 0.17^{-3} 3680^{-5} 120^{-5} $2.0 \pm 0.2^{-5} \pm 0.6^{-5}$ 2.48×10^{-3} $0.15^{-5} \pm 120^{-5}$ $2.0 \pm 0.2^{-5} \pm 0.4^{-7} \times 10^{-3}$ 120^{-5} $2.0 \pm 0.2^{-5} \pm 0.4^{-5} \times 10^{-3}$ $0.15^{-5} \pm 120^{-5}$ $120^{-5} \pm 0.2^{-5} \pm 0.4^{-7} \times 10^{-3}$ $0.59^{-5} \pm 120^{-5} \pm 0.4^{-7} \times 10^{-3}$ 120^{-5} $2.0 \pm 0.2^{-5} \pm 0.4^{-7} \times 10^{-3}$ $0.13^{-5} \pm 0.4^{-7} \times 10^{-3}$ $0.59^{-5} \pm 0.4^{-7} \times 10^{-3} \times 10^{-3}$ 120^{-5} $2.5 \pm 0.6^{-5} \pm 0.6^{-5} \times 10^{-5} \times 10^{-5} - 0.26^{-5} \times 200^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-3} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{$	26	5.5 ± 0.6	5.99×10^{-3}	0.12	6740	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.0 1 0.2		0.01	1020
60 5.5 ± 0.6 3.18×10^{-5} 0.35 1160 120 2.0 ± 0.2 7.46×10^{-5} 0.51 60 5.5 ± 0.6 8.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 1.46×10^{-4} 0.52 60 5.5 ± 0.6 1.55×10^{-4} 0.36 2130 120 2.0 ± 0.2 2.68×10^{-4} 0.53 60 5.5 ± 0.6 3.03×10^{-4} 0.29 2720 120 2.0 ± 0.2 6.69×10^{-4} 0.53 60 5.5 ± 0.6 7.11×10^{-4} 0.21 3260 120 2.0 ± 0.2 1.23×10^{-3} 0.55 60 5.5 ± 0.6 1.31×10^{-3} 0.17 3680 120 2.0 ± 0.2 2.40×10^{-3} 0.57 60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 60 5.5 ± 0.6 5.99×10^{-3} 0.13 4690 120 2.0 ± 0.2 5.47×10^{-3} 0.59 720 5.5 ± 0.6 3.18×10^{-5} 0.26 200 1.5×10^{-5} 0.26 200	20	5.5 1 0.0	5.99 × 10	0.10	0,10	120	2.0 ± 0.2	3.09×10^{-5}	0.45	55
60 5.5 ± 0.6 8.18×10^{-5} 0.40 1670 120 2.0 ± 0.2 1.46×10^{-4} 0.52 60 5.5 ± 0.6 1.55×10^{-4} 0.36 2130 120 2.0 ± 0.2 2.68×10^{-4} 0.53 60 5.5 ± 0.6 3.03×10^{-4} 0.29 2720 120 2.0 ± 0.2 6.69×10^{-4} 0.53 60 5.5 ± 0.6 7.11×10^{-4} 0.21 3260 120 2.0 ± 0.2 1.23×10^{-3} 0.55 60 5.5 ± 0.6 1.31×10^{-3} 0.17 3680 120 2.0 ± 0.2 2.40×10^{-3} 0.57 60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 60 5.5 ± 0.6 5.99×10^{-3} 0.13 4690 $*$ Zehr and Backofen [11] have reported the stress in psi.120 5.5 ± 0.6 3.18×10^{-5} 0.26 200 $1 \pm 16 = 6$ 8040 LPc	60	5.5 ± 0.6	3.18×10^{-5}	0.35	1160	120	2.0 ± 0.2	7.46×10^{-5}	0.51	85
60 5.5 ± 0.6 1.55×10^{-4} 0.36 2130 120 2.0 ± 0.2 2.68×10^{-4} 0.53 60 5.5 ± 0.6 3.03×10^{-4} 0.29 2720 120 2.0 ± 0.2 6.69×10^{-4} 0.53 60 5.5 ± 0.6 7.11×10^{-4} 0.21 3260 120 2.0 ± 0.2 1.23×10^{-3} 0.55 60 5.5 ± 0.6 1.31×10^{-3} 0.17 3680 120 2.0 ± 0.2 2.40×10^{-3} 0.57 60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.59 <td>60</td> <td>5.5 ± 0.6</td> <td>8.18×10^{-5}</td> <td>0.40</td> <td>1670</td> <td>120</td> <td>2.0 ± 0.2</td> <td>1.46×10^{-4}</td> <td>0.52</td> <td>120</td>	60	5.5 ± 0.6	8.18×10^{-5}	0.40	1670	120	2.0 ± 0.2	1.46×10^{-4}	0.52	120
60 5.5 ± 0.6 3.03×10^{-4} 0.29 2720 120 2.0 ± 0.2 6.69×10^{-4} 0.53 2.69×10^{-4} 0.53×10^{-4} 0.55 0.59×10^{-3} 0.55×10^{-3} 0.55×10^{-3} 0.55×10^{-3} 0.57×10^{-3} $0.59 \times 10^{-3} \times 10^{-3} \times 10^{-3}$ $0.59 \times 10^{-3} \times 10^{-3} \times 10^{-3}$ $0.59 \times 10^{-3} \times 10^{-3} \times 10^{-3} \times 10^{-3} \times 10^{-3}$ $0.59 \times 10^{-3} \times$	60	5.5 ± 0.6	1.55×10^{-4}	0.36	2130	120	2.0 ± 0.2	2.68×10^{-4}	0.53	170
60 5.5 ± 0.6 7.11×10^{-4} 0.21 3260 120 2.0 ± 0.2 1.23×10^{-3} 0.55 60 5.5 ± 0.6 1.31×10^{-3} 0.17 3680 120 2.0 ± 0.2 1.23×10^{-3} 0.57 60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 60 5.5 ± 0.6 5.99×10^{-3} 0.13 4690 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 2.0 ± 0.2 5.47×10^{-3} 0.59 $0.$	60	5.5 ± 0.6	3.03×10^{-4}	0.29	2720	120	$2.0~\pm~0.2$	6.69×10^{-4}	0.53	250
60 5.5 ± 0.6 1.31×10^{-3} 0.17 3680 120 2.0 ± 0.2 2.40×10^{-3} 0.57 5.5 60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.59 <td>60</td> <td>5.5 ± 0.6</td> <td>7.11×10^{-4}</td> <td>0.21</td> <td>3260</td> <td>120</td> <td>2.0 ± 0.2</td> <td>1.23×10^{-3}</td> <td>0.55</td> <td>390</td>	60	5.5 ± 0.6	7.11×10^{-4}	0.21	3260	120	2.0 ± 0.2	1.23×10^{-3}	0.55	390
60 5.5 ± 0.6 2.48×10^{-3} 0.15 4150 120 2.0 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 120 5.5 ± 0.6 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 3.18×10^{-5} 0.26 200 1 ± 0.2 5.47×10^{-3} 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59	60	5.5 ± 0.6	1.31×10^{-3}	0.17	3680	120	2.0 ± 0.2	2.40×10^{-3}	0.57	560
60 5.5 ± 0.6 5.99×10^{-3} 0.13 4690 *Zehr and Backofen [11] have reported the stress in psi. 120 5.5 ± 0.6 3.18×10^{-5} 0.26 200 $1 \pm 1 \pm 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	60	5.5 ± 0.6	2.48×10^{-3}	0.15	4150	120	2.0 ± 0.2	5.47×10^{-3}	0.59	860
120 55 ± 0.6 3.18 × 10 ⁻⁵ 0.26 200 1 ± 12 6 00 0 D	60	5.5 ± 0.6	5.99×10^{-3}	0.13	4690	*Zehr and Bac	kofen [11] hav	e reported the et-	ress in ne	
120 3.5 ± 0.0 3.10×10 0.20 200 $1 \text{ DS1} = 0.0948 \text{ KPa}.$	120	5.5 ± 0.6	3.18×10^{-5}	0.26	200	1 psi = 6.8948	kPa.		P0	

coefficients A_{rst} , i.e.

$$\sum_{k=1}^{k=E} \sum_{j=1}^{j=D} \sum_{i=1}^{i=C} \left[(m_{ijk})_{\text{observed}} - (m_{ijk})_{\text{predicted}} \right]^2 = \phi(A_{000}, A_{001}, \dots, A_{rst})$$
(6)

where $(m_{ijk})_{\text{observed}}$ is the experimental value of m_{ijk} and the corresponding $(m_{ijk})_{\text{predicted}}$ value is calculated using Equation (5).

The polynomial of interest was evaluated by minimising the function ϕ in Equation 6 by successively differentiating with respect to the coefficients and equating the first derivatives to zero. Thus in the case of a polynomial of the maximum possible degree, one has (r + Cs + CDt) equations, each involving the summation of (r + Cs + CDt) individual terms. Solving these equations, the (r + Cs + CDt) coefficients A_{rst} are determined.

Using the above procedure, the following set of equations are derived.

$$\sum_{r,s,t=0}^{r+s+t=N} \underline{\alpha}_{(p+Cq+CDu)(r+Cs+CDt)} A_{rst} = \underline{\beta}_{(p+Cq+CDu)}$$
(7)

where the general terms

$$\underline{\alpha}_{(p+Cq+CDu)(r'+Cs'+CDt')} = \sum_{k=1}^{k=E} \sum_{j=1}^{j=D} \sum_{i=1}^{i=C} X_i^{p+r'} Y_j^{q+s'} Z_k^{u+t'}$$

and

$$\underline{\beta}_{(p+Cq+CDu)} = \sum_{k=1}^{k=E} \sum_{j=1}^{j=D} \sum_{i=1}^{i=C} (m_{ijk})_{\text{observed}} X_i^p Y_j^q Z_k^u$$

In these expressions, p, q, u and r', s' and t' take on values from zero to (p + Cq + CDu) = (r + Cs + CDt) and (r' + Cs' + CDt') = (r + Cs + CDt)with $p \leq C - 1$, $r' \leq C - 1$, $q \leq D - 1$, $s' \leq D - 1$, $u \leq E - 1$ and $t' \leq E - 1$. From the (r + Cs + CDt) equations, using Gaussian elimination one can determine the r + Cs + CDt coefficients precisely.

The above procedure was also used for evaluating K as $F_2(X, Y, Z)$ using Equation 1 for estimating the experimental values of K from the experimental values of σ , \dot{e} and m.

The analysis was tested using the experimental data of Zehr and Backofen [11], pertaining to a tin-lead eutectic alloy (Table I). Polynomials of degrees up to the twelfth were determined for $m = F_1(X, Y, Z)$, the limit on the maximum degree of the polynomial being set by the number of experimental data points available. The individual powers of X, Y and Z were restricted to the seventh, third and second degrees respectively, again based on the availability of experimental data.

The number of coefficients to be evaluated for the polynomials of degrees one to twelve were 4, 10, 19, 30, 42, 54, 66, 77, 86, 92, 95 and 96. As noted by Padmanabhan and Davies [9], judgment is involved in the selection of the "best fit" polynomial, as a number of procedures are available [10]. Here the forward

 $A_{000} = A_{300} = A_{600} =$

TABLE II Selection of "best fit" polynomial for predicting the values of m

Degree of equation	Root mean square error (%)	Residual sum of squares	$\frac{(Er_n^{\dagger}-Er_{n+1}^{\ddagger})\cdot 100^*}{Er_n}$ (%)
1	22.81	7.10×10^{-1}	_
2	14.11 [.]	2.72×10^{-1}	61.69
3	11.89	1.93×10^{-1}	29.04
4	9.32	1.18×10^{-1}	38.86
5	5.38	3.95×10^{-2}	66.53
6	2.61	9.30×10^{-3}	76.46
7	1.10	1.66×10^{-3}	82.15
8	0.13	2.12×10^{-5}	98.72
9	0.04	2.08×10^{-6}	90.19
10	0.05	3.36×10^{-6}	- 61.54
[]	0.01	1.28×10^{-7}	96.19
12	0.01	9.63×10^{-8}	24.77

*As the improvement in fit is due to the inclusion of the (n + 1)th degree, the computed value of the expression is assigned to the polynomial of degree (n + 1).

 FEr_n = Residual sum of squares of polynomial of degree *n*.

[‡] Er_{n+1} = Residual sum of squares of polynomial of degree (n + 1).

selection procedure was used, in which it is checked if on moving from a given degree of polynomial to the next there is a significant reduction in the sum of the squares of the residuals. That degree of the polynomial moving to which the reduction in the sum of the squares of the residuals was maximum, was selected as the "best fit" Equation 10. (One could have also selected the equation of the lowest degree which fell within a prescribed error range, this error being taken to be of the order of the accuracy of the experimental data [12]. But the errors in the measurements of Zehr and Backofen [11] are not known.)

To evaluate the error in the prediction of the polynomials of different degrees the root mean square error, RMS error, was calculated as

$$\mathbf{RMS \ error} = (1/\bar{m}_{observed})$$

$$\times \left[(1/n) \sum_{i=1}^{i=n} \left[(m_i)_{observed} - (m_i)_{predicted} \right]^2 \right]^{1/2}$$

$$= (1/\bar{m}_{observed})$$

$$\times \left[(1/n) \sum_{k=1}^{k=E} \sum_{j=1}^{j=D} \sum_{i=1}^{i=C} \left[(m_{ijk})_{observed} - (m_{ijk})_{predicted} \right]^2 \right]^{1/2}$$
(8)

where n = CDE = number of observations.

Table II displays the RMS error evaluated for the different degrees of the polynomials. Using the forward selection procedure, the "best fit" equation for m was decided as the polynomial of degree eight.

Thus, for the tin-lead eutectic alloy the "best fit" polynomial for calculating m was chosen as

$$(m)_{\text{predicted}} = \sum_{r,s,t=0}^{r+s+t=8} A_{rst} X^r Y^s Z^t \qquad (9)$$

where

$A_{110} = -1.2379 \times 10^2$	$A_{210} = +7.0144 \times 10^{1}$	$A_{310} = -2.4603 \times 10^{1}$
$A_{410} = +5.8737$	$A_{510} = -8.4080 \times 10^{-1}$	$A_{610} = +5.4899 \times 10^{-2}$
$A_{710} = -9.7238 \times 10^{-4}$	$A_{020} = -1.0001 \times 10^2$	$A_{120} = +1.0548 \times 10^2$
$A_{220} = -4.3144 \times 10^{1}$	$A_{320} = +1.1042 \times 10^{1}$	$A_{420} = -2.6325$
$A_{520} = +4.1179 \times 10^{-1}$	$A_{620} = -2.1584 \times 10^{-2}$	$A_{030} = +1.6540 \times 10^{1}$
$A_{130} = -1.4601$	$A_{230} = -1.0607 \times 10^{1}$	$A_{330} = 5.2353$
$A_{430} = -7.6410 \times 10^{-1}$	$A_{530} = 2.0526 \times 10^{-2}$	$A_{001} = -4.8138$
$A_{101} = 1.2272 \times 10^{1}$	$A_{201} = -9.7664$	$A_{301} = 2.9442$
$A_{401} = -8.0264 \times 10^{-2}$	$A_{501} = -1.4107 \times 10^{-1}$	$A_{601} = 2.8772 \times 10^{-2}$
$A_{701} = -1.7955 \times 10^{-3}$	$A_{011} = -4.5984 \times 10^{1}$	$A_{111} = 5.0860 \times 10^{1}$
$A_{211} = -1.8818 \times 10^{1}$	$A_{311} = 2.2897$	$A_{411} = 5.0984 \times 10^{-2}$
$A_{511} = -1.5959 \times 10^{-2}$	$A_{611} = 1.0629 \times 10^{-4}$	$A_{021} = 6.5829 \times 10^{1}$
$A_{121} = -7.4601 \times 10^{1}$	$A_{221} = 2.9075 \times 10^{1}$	$A_{321} = -4.3830$
$A_{421} = 2.1474 \times 10^{-1}$	$A_{521} = -6.2282 \times 10^{-3}$	$A_{031} = -2.0917 \times 10^{1}$
$A_{131} = 2.1692 \times 10^{1}$	$A_{231} = -7.0948$	$A_{331} = 6.2994 \times 10^{-1}$
$A_{431} = 2.6734 \times 10^{-2}$	$A_{002} = 1.4468$	$A_{102} = -3.2496$
$A_{202} = 2.7762$	$A_{302} = -1.1756$	$A_{402} = 2.6485 \times 10^{-1}$
$A_{502} = -3.0641 \times 10^{-2}$	$A_{602} = 1.4544 \times 10^{-3}$	$A_{012} = 4.2234$
$A_{112} = -4.45006$	$A_{212} = 1.4965$	$A_{312} = -1.0555 \times 10^{-1}$
$A_{412} = -2.3423 \times 10^{-2}$	$A_{512} = 2.5100 \times 10^{-3}$	$A_{022} = -6.4307$
$A_{122} = 7.2845$	$A_{222} = -2.7922$	$A_{322} = 3.9336 \times 10^{-1}$
$A_{422} = -1.2736 \times 10^{-2}$	$A_{032} = 2.1756$	$A_{132} = -2.3550$
$A_{232} = 8.2957 \times 10^{-1}$	$A_{332} = -9.3539 \times 10^{-2}$	

Table III compares the $m - \dot{\epsilon}$ relationship predicted using Equation 9 with the experimental results [11]. (In order to keep K also in the same order of magnitude as the other variables, K was expressed in ksi; lksi =6.8948 MPa).

In a similar manner, $K = F_2(X, Y, Z)$ was determined. As before, the forward selection procedure was used to select the "best fit" polynomial. Table IV presents a summary. Evidently the "best fit" polynomial in this case was given by

where

 $K_{\text{predicted}} = \sum_{r,s,t=0}^{r+s+t=8} A_{rst} X^r Y^s Z^t$ (10)

$\begin{array}{l} A_{000} = -5.0970 \times 10^4 \\ A_{300} = -1.4870 \times 10^4 \\ A_{600} = +2.8456 \times 10^2 \\ A_{110} = -3.5670 \times 10^5 \\ A_{410} = +1.2639 \times 10^3 \\ A_{710} = +8.1140 \\ A_{220} = -3.4544 \times 10^5 \\ A_{520} = +1.1146 \times 10^3 \\ A_{130} = -2.4289 \times 10^5 \\ A_{430} = +5.9146 \times 10^3 \\ A_{101} = -2.7365 \times 10^4 \\ A_{401} = -1.0644 \times 10^3 \\ A_{701} = -2.6255 \\ A_{211} = -1.8626 \times 10^4 \\ A_{511} = -6.1769 \times 10^1 \\ A_{121} = -3.2779 \times 10^4 \\ A_{421} = -2.1289 \times 10^2 \\ A_{131} = +1.8668 \times 10^4 \\ A_{431} = -8.8760 \times 10^1 \\ A_{202} = -3.4024 \times 10^3 \\ A_{502} = +2.2666 \times 10^1 \\ A_{112} = -5.3204 \times 10^3 \\ A_{412} = +9.4356 \times 10^1 \\ A_{122} = +2.2057 \times 10^3 \end{array}$	$\begin{array}{l} A_{100} = +5.6522 \times 10^4 \\ A_{400} = +9.2913 \times 10^3 \\ A_{700} = -1.3417 \times 10^1 \\ A_{210} = +1.9034 \times 10^5 \\ A_{510} = +1.1174 \times 10^3 \\ A_{020} = -3.8166 \times 10^5 \\ A_{320} = +1.0375 \times 10^5 \\ A_{620} = -1.9269 \times 10^1 \\ A_{230} = +1.4253 \times 10^5 \\ A_{530} = -3.3766 \times 10^2 \\ A_{201} = +1.2442 \times 10^4 \\ A_{501} = +3.8127 \times 10^2 \\ A_{011} = -3.5789 \times 10^4 \\ A_{311} = +2.8561 \times 10^3 \\ A_{611} = +4.1441 \\ A_{221} = +1.1211 \times 10^4 \\ A_{521} = +2.7234 \times 10^1 \\ A_{231} = -7.9855 \times 10^3 \\ A_{002} = -3.0379 \times 10^3 \\ A_{302} = +1.1955 \times 10^3 \\ A_{602} = -8.8053 \times 10^{-1} \\ A_{212} = +2.8227 \times 10^3 \\ A_{512} = -5.0819 \\ A_{222} = -7.9889 \times 10^2 \end{array}$	$A_{200} = A_{500} = A_{500} = A_{610} = A_{610} = A_{120} = A_{420} = A_{300} = A_{300} = A_{301} = A_{001} = A_{0$
$A_{412} = +9.4356 \times 10^{1}$ $A_{122} = +2.2057 \times 10^{3}$ $A_{422} = -1.5470$ $A_{232} = +2.8487 \times 10^{2}$	$A_{512} = -5.0819$ $A_{222} = -7.9889 \times 10^{2}$ $A_{032} = +7.7068 \times 10^{2}$ $A_{332} = -3.22946 \times 10^{1}$	$A_{022} = A_{322} = A_{132} =$

The variation of K with the experimental variables is predicted in Table V by the best fit polynomial of degree eight and compared with the experimental results.

Using the predicted values of m and K (Equations 9 and 10), the stress values corresponding to different strain rates, grain sizes and temperatures could be calculated and compared with the experimental results - Table VI.

3. Optimisation

The analysis could be further developed to optimise the deformation variables according to a pre-

$A_{200} = -8.2916 \times 10^3$
$A_{500} = -2.3583 \times 10^3$
$A_{010} = -2.5015 \times 10^5$
$A_{310} = -4.2738 \times 10^4$
$A_{610} = -1.7947 \times 10^2$
$A_{120} = +5.7633 \times 10^5$
$A_{420} = -1.6010 \times 10^4$
$A_{030} = +1.6300 \times 10^5$
$A_{330} = -4.1257 \times 10^4$
$A_{001} = +2.0063 \times 10^4$
$A_{301} = -8.9486 \times 10^2$
$A_{601} = -5.2111 \times 10^{1}$
$A_{111} = +4.3646 \times 10^4$
$A_{411} = +9.0548 \times 10^{1}$
$A_{021} = +3.0298 \times 10^4$
$A_{321} = -8.1879 \times 10^2$
$A_{031} = -1.5649 \times 10^4$
$A_{331} = +1.4312 \times 10^3$
$A_{102} = +5.0393 \times 10^3$
$A_{402} = -2.2963 \times 10^2$
$A_{012} = +3.8793 \times 10^3$
$A_{312} = -7.3062 \times 10^2$
$A_{022} = -2.0263 \times 10^3$
$A_{322} = +1.0051 \times 10^2$
$A_{132} = -8.1902 \times 10^2$

TABLE III Experimental and predicted "m" values for different strain rates, grain sizes and temperatures

Temperature (<i>T</i> -273)	L (µm)	$\dot{\epsilon}$ (s ⁻¹)	m (experimental)	m (predicted)
26	7.5 ± 0.8	3.18×10^{-5}	0.311	0.311
26	75 ± 0.8	7.70×10^{-5}	0.224	0.223
26	7.5 ± 0.8	1.55×10^{-4}	0.187	0.187
20	7.5 ± 0.8	2.85×10^{-4}	0.168	0.168
20	7.5 ± 0.8	5.69×10^{-4}	0.148	0.108
20	7.5 ± 0.8	0.09×10^{-3}	0.140	0.140
20	7.3 ± 0.8	1.31×10^{-3}	0.132	0.132
26	7.5 ± 0.8	2.36×10^{-3}	0.111	0.111
26	7.5 ± 0.8	6.37×10^{-5}	0.079	0.079
60	7.5 ± 0.8	3.18×10^{-5}	0.242	0.242
60	7.5 + 0.8	7.70×10^{-5}	0.278	0.278
60	7.5 + 0.8	1.55×10^{-4}	0.248	0.249
60	7.5 + 0.8	2.85×10^{-4}	0.205	0.205
60	7.5 ± 0.8	6.69×10^{-4}	0.142	0.142
60	7.5 ± 0.8	1.31×10^{-3}	0.105	0.106
60	7.5 ± 0.8	2.56×10^{-3}	0.084	0.084
60 60	7.5 ± 0.8	6.37×10^{-3}	0.076	0.076
00	7.5 <u>1</u> 0.6	0.37 × 10	0.070	0.070
120	7.5 ± 0.8	3.28×10^{-5}	0.599	0.599
120	7.5 ± 0.8	7.93×10^{-5}	0.442	0.442
120	7.5 ± 0.8	1.55×10^{-4}	0.366	0.367
120	7.5 ± 0.8	3.03×10^{-4}	0.314	0.314
120	7.5 ± 0.8	7.11×10^{-4}	0.263	0.263
120	7.5 + 0.8	1.39×10^{-3}	0.229	0.229
120	7.5 ± 0.8	2.72×10^{-3}	0.195	0.195
120	7.5 ± 0.8	6.37×10^{-3}	0.151	0.151
170	7.5 ± 0.8	3.18×10^{-5}	0.582	0.582
170	7.5 ± 0.8	7.93×10^{-5}	0.583	0.583
170	7.5 ± 0.8	1.55×10^{-4}	0.601	0.600
170	7.5 ± 0.8	2.85×10^{-4}	0.615	0.616
170	$7.5~\pm~0.8$	7.11×10^{-4}	0.613	0.613
170	7.5 ± 0.8	1.39×10^{-3}	0.585	0.585
170	7.5 ± 0.8	2.56×10^{-3}	0.536	0.536
170	7.5 ± 0.8	9.47×10^{-3}	0.368	0.368
•	_		0.005	0.000
26	5.5 ± 0.6	3.18×10^{-5}	0.305	0.306
26	5.5 ± 0.6	7.46×10^{-3}	0.273	0.272
26	5.5 ± 0.6	1.55×10^{-4}	0.238	0.238
26	5.5 ± 0.6	3.03×10^{-4}	0.205	0.206
26	5.5 ± 0.6	7.11×10^{-4}	0.167	0.167
26	5.5 ± 0.6	1.39×10^{-3}	0.141	0.140
26	5.5 ± 0.6	2.56×10^{-3}	0.122	0.122
26	5.5 ± 0.6	5.99×10^{-3}	0.101	0.101
60	55 ± 0.6	3.18×10^{-5}	0.352	0 352
60	5.5 ± 0.6	8.18×10^{-5}	0.398	0.392
60	5.5 ± 0.6	1.55×10^{-4}	0.357	0.357
60	5.5 ± 0.0	1.55×10^{-4}	0.337	0.337
60 (0	5.5 ± 0.0	3.03×10^{-4}	0.292	0.292
60 60	5.5 ± 0.6	7.11×10^{-3}	0.213	0.212
60	5.5 ± 0.6	1.31×10^{-3}	0.173	0.173
60	5.5 ± 0.6	2.48×10^{-3}	0.148	0.149
60	5.5 ± 0.6	5.99×10^{-5}	0.130	0.129
120	5.5 + 0.6	3.18×10^{-5}	0.257	0.257
120	5.5 ± 0.6	7.46×10^{-5}	0.491	0.492
120	55 ± 0.6	1.46×10^{-4}	0 549	0.548
120	5.5 ± 0.6	2.68×10^{-4}	0.537	0.540
120	5.5 ± 0.6	6.49×10^{-4}	0.457	0.458
120	5.5 ± 0.6	1.16×10^{-3}	0.387	0.387
120	5.5 ± 0.6	1.10×10^{-3}	0.304	0.307
120	5.5 ± 0.6	4.00×10^{-3}	0.304	0.303
120	5.5 ± 0.0	4.33 × 10	0.220	0.220
170	5.5 ± 0.6	7.93×10^{-5}	0.451	0.451
170	5.5 ± 0.6	1.55×10^{-4}	0.584	0.584
170	5.5 ± 0.6	2.85×10^{-4}	0.629	0.629
170	5.5 ± 0.6	7.11×10^{-4}	0.618	0.618
170	5.5 ± 0.6	1.39×10^{-3}	0.581	0.581
170	5.5 + 0.6	2.72×10^{-3}	0.533	0.534
170	5.5 ± 0.6	6.37×10^{-3}	0 457	0.456
170	5.5 + 0.6	1.17×10^{-2}	0.381	0.381
	5.5 1 0.0	1.11 / 10	0.501	0.201
26	2.0 ± 0.2	2.99×10^{-5}	0.289	0.289
26	2.0 ± 0.2	7.46×10^{-5}	0.406	0.406
26	$2.0~\pm~0.2$	1.37×10^{-4}	0.465	0.465

TABLE III (continued)

Temperature (T-273)	<i>L</i> (μm)	$\dot{\varepsilon}$ (s ⁻¹)	m (experimental)	m (predicted)
26	20 ± 0.2	2.77×10^{-4}	0.506	0.506
26	2.0 ± 0.2	6.29×10^{-4}	0.513	0.512
26	2.0 ± 0.2	1.31×10^{-3}	0.482	0.482
26	2.0 + 0.2	2.33×10^{-3}	0.438	0.439
26	2.0 ± 0.2	4.70×10^{-3}	0.371	0.371
68	2.0 ± 0.2	3.18×10^{-5}	0.365	0.365
68	2.0 ± 0.2	7.70×10^{-5}	0.427	0.426
68	2.0 ± 0.2	1.46×10^{-4}	0.460	0.460
68	2.0 ± 0.2	2.85×10^{-4}	0.486	0.487
68	$2.0~\pm~0.2$	6.90×10^{-4}	0.507	0.507
68	2.0 ± 0.2	1.35×10^{-3}	0.511	0.511
68	$2.0~\pm~0.2$	2.48×10^{-3}	0.505	0.504
68	$2.0~\pm~0.2$	5.64×10^{-3}	0.479	0.479
90	$2.0~\pm~0.2$	3.18×10^{-5}	0.443	0.442
90	2.0 ± 0.2	7.70×10^{-5}	0.434	0.435
90	2.0 ± 0.2	1.46×10^{-4}	0.446	0.446
90	2.0 ± 0.2	2.85×10^{-4}	0.467	0.466
90	2.0 ± 0.2	6.90×10^{-4}	0.498	0.497
90	2.0 ± 0.2	1.35×10^{-3}	0.516	0.517
90	$2.0~\pm~0.2$	2.48×10^{-3}	0.523	0.524
90	$2.0~\pm~0.2$	5.47×10^{-3}	0.513	0.513
120	2.0 ± 0.2	3.09×10^{-5}	0.445	0.445
120	$2.0~\pm~0.2$	7.46×10^{-5}	0.511	0.511
120	$2.0~\pm~0.2$	1.46×10^{-4}	0.523	0.523
120	2.0 ± 0.2	2.68×10^{-4}	0.526	0.526
120	2.0 ± 0.2	6.69×10^{-4}	0.534	0.534
120	$2.0~\pm~0.2$	1.23×10^{-3}	0.548	0.548
120	$2.0~\pm~0.2$	2.40×10^{-3}	0.571	0.571
120	2.0 ± 0.2	5.47×10^{-3}	0.592	0.592

determined criterion, e.g. minimisation of power con-

sumption. This was achieved in the following manner. Power consumption per unit volume of material deformed, P, is given by

$$P_{\text{experimental}} = \sigma_{\text{experimental}} \cdot \dot{\varepsilon}_{\text{experimental}}$$
 (11)

on the other hand,

 $P_{\text{predicted}} = K_{\text{predicted}} \cdot \hat{\varepsilon}^{(m_{\text{predicted}}+1)}$ (using Equations 1 and 11)

Table VII shows the variation with strain rate of power consumption per unit volume of material deformed for different combinations of grain size and temperature.

TABLE IV Selection of "best fit" polynomial for predicting the values of K

Degree of equation	Root mean square error (%)	Residual sum of squares	$\frac{(Er_n - Er_{n+1}) \cdot 100}{Er_n} (\%)$
1	113.47	7.769×10^{4}	
2	100.36	6.078×10^{4}	21.77
3	89.54	4.838×10^{4}	20.40
4	74.53	3.352×10^{4}	30.72
5	52.39	1.657×10^{4}	50.57
6	27.75	4.646×10^{3}	71.96
7	13.13	1.040×10^{3}	77.62
8	3.72	8.365×10^{i}	91.96
9	2.82	4.807×10^{1}	42.53
10	9.39	5.329×10^{2}	-1008.59
11	2.08	2.622×10^{10}	95.08
12	2.06	2.565×10^{1}	2.17

2138

From Table VII it is evident that for each combination of grain size and temperature there is a range of strain rate values for which the power consumption is quite low. Thus, one could select a convenient combination of temperature, grain size and strain rate range to complete the deformation with minimum power consumption and the least possible forming time.

Moreover, in accordance with the experimental results the predicted power consumption decreased with decreasing grain size and/or increasing temperature (Table VII).

The strength of the above analysis lies in its ability to allow for internal variations in strain rate, m and K, while at the same time permitting the computation of the external load and power consumption for possible optimisation.

Finally, although this numerical procedure has been validated by considering superplastic deformation, it can be used for all situations where a particular parameter is influenced by a number of independent variables.

4. Conclusions

An earlier multi-dimensional regression analysis [9] could be extended to four dimensional space where the strain-rate sensitivity index, m, and the strength parameter, K, are expressible as functions of strain rate, grain size and temperature. These expressions were useful for predicting the external load and power consumption so that an optimisation of the operating conditions (for minimum power consumption) became

Temperature (T-273)	$L(\mu m)$	$\dot{\varepsilon}$ (s ⁻¹)	K (experimental)	K (predicted)
26	75 ± 08	3.18×10^{-5}	69.72	69.83
26	7.5 ± 0.8	7.70×10^{-5}	29.50	29.02
26	7.5 ± 0.8	1.55×10^{-4}	20.75	21.23
26	7.5 ± 0.8	2.85×10^{-4}	17.92	18.21
26	7.5 ± 0.8	6.69×10^{-4}	15.17	14.99
26	7.5 ± 0.8	1.31×10^{-3}	13.88	12.93
26	7.5 ± 0.8 75 ± 0.8	6.37×10^{-3}	10.06	9.85
20	7.5 1 0.0	0.57 × 10	00.00	22.40
60	7.5 ± 0.8	3.18×10^{-5} 7.70 × 10 ⁻⁵	22.33	22.40
60 60	7.5 ± 0.8	1.55×10^{-4}	24.66	32.29 74.87
60 60	7.5 ± 0.8 75 + 08	2.85×10^{-4}	16.76	16.43
60	7.5 ± 0.8	6.69×10^{-4}	10.69	10.76
60	7.5 ± 0.8	1.31×10^{-3}	8.08	8.87
60	7.5 ± 0.8	2.56×10^{-3}	7.05	6.26
60	7.5 ± 0.8	6.37×10^{-3}	6.65	6.84
120	7.5 ± 0.8	3.28×10^{-5}	277.84	277.39
120	7.5 ± 0.8	7.93×10^{-5}	56.90	59.07
120	7.5 ± 0.8	1.55×10^{-4}	29.55	26.61
120	7.5 ± 0.8	3.03×10^{-4}	19.21	20.07
120	7.5 ± 0.8	7.11×10^{-4}	12.27	13.64
120	7.5 ± 0.8	1.39×10^{-5} 2.72 × 10 ⁻³	9.84	8.38 8.82
120	7.5 ± 0.8 7 5 ± 0.8	6.37×10^{-3}	6.36	6.31
120	7.5 <u>1</u> 0.0	3.10 10-5	22.24	22.52
170	7.5 ± 0.8	3.18×10^{-5}	23.34	23.52
170	7.3 ± 0.8 75 + 08	1.55×10^{-4}	27.35	21.04
170	7.5 ± 0.8	2.85×10^{-4}	32.62	31.75
170	7.5 ± 0.8	7.11×10^{-4}	29.83	30.53
170	7.5 ± 0.8	1.39×10^{-3}	25.14	24.26
170	7.5 ± 0.8	2.56×10^{-3}	17.89	18.35
170	7.5 ± 0.8	9.47×10^{-3}	7.90	7.87
26	5.5 ± 0.6	3.18×10^{-5}	57.21	57.06
26	5.5 ± 0.6	7.46×10^{-5}	41.18	41.84
26	5.5 ± 0.6	1.55×10^{-4}	29.80	29.48
26	5.5 ± 0.6	3.03×10^{-4}	23.34	22.24
26	5.5 ± 0.6	1.39×10^{-3}	16.72	17.94
26	5.5 ± 0.6	2.56×10^{-3}	12.39	11.21
26	5.5 ± 0.6	5.99×10^{-3}	11.31	11.62
60	55 ± 0.6	3.18×10^{-5}	44 74	44.82
60 60	5.5 ± 0.6	8.18×10^{-5}	71 14	70.22
60	5.5 ± 0.6 5.5 ± 0.6	1.55×10^{-4}	49.18	50.91
60	5.5 ± 0.6	3.03×10^{-4}	29.06	28.54
60	5.5 ± 0.6	7.11×10^{-4}	15.29	14.31
60	5.5 ± 0.6	1.31×10^{-3}	11.63	12.01
60	5.5 ± 0.6	2.48×10^{-3}	10.15	10.58
60	5.5 ± 0.6	5.99×10^{-5}	9.13	8.90
120	5.5 ± 0.6	3.18×10^{-5}	2.87	3.15
120	5.5 ± 0.6	7.46×10^{-3}	30.87	30.21
120	5.5 ± 0.6	1.46×10^{-4}	50.09	49.95
120	5.5 ± 0.6	2.08×10^{-4}	40.82	47.01
120	5.5 ± 0.6	1.16×10^{-3}	15.93	13.67
120	5.5 ± 0.6	2.26×10^{-3}	8.92	10.22
120	5.5 ± 0.6	4.99×10^{-3}	5.38	5.16
170	5.5 + 0.6	7.93×10^{-5}	5.08	4.29
170	$5.5 \stackrel{-}{\pm} 0.6$	1.55×10^{-4}	17.40	20.40
170	5.5 ± 0.6	2.85×10^{-4}	25.26	21.96
170	5.5 ± 0.6	7.11×10^{-4}	22.67	23.47
170	5.5 ± 0.6	1.39×10^{-3}	19.05	20.18
170	5.5 ± 0.6	2.72×10^{-3}	13.16	12.13
170	3.5 ± 0.6	0.57×10^{-3}	8.68	8.89
170	5.5 ± 0.0	1.1/ X 10	0.54	0.33
26	2.0 ± 0.2	2.99×10^{-5}	7.96	7.99
26	2.0 ± 0.2	7.46×10^{-5}	25.07	24.94

TABLE V Experimental and predicted K values for varying strain rates, grain sizes and temperatures. (K values are in units of ksi; 1 ksi = 6.8948 MPa)

TABLE V (continued)

Temperature (T-273)	L (µm)	$\dot{\varepsilon}$ (s ⁻¹)	K (experimental)	K (predicted)
26	2.0 ± 0.2	1.37×10^{-4}	44.87	44.81
26	2.0 + 0.2	2.77×10^{-4}	61.43	62.15
26	2.0 + 0.2	6.29×10^{-4}	65.22	64.28
26	2.0 + 0.2	1.31×10^{-3}	52.85	53.19
26	2.0 + 0.2	2.33×10^{-3}	41.59	41.75
26	2.0 ± 0.2	4.70×10^{-3}	27.19	27.10
68	2.0 ± 0.2	3.18×10^{-5}	7.73	7.89
68	2.0 ± 0.2	7.70×10^{-5}	14.51	14.39
68	2.0 ± 0.2	1.46×10^{-4}	18.93	18.58
68	2.0 ± 0.2	2.85×10^{-4}	24.78	24.67
68	2.0 ± 0.2	6.90×10^{-4}	28.69	29.34
68	2.0 ± 0.2	1.35×10^{-3}	28.50	29.15
68	2.0 ± 0.2	2.48×10^{-3}	29.04	27.78
68	$2.0~\pm~0.2$	5.64×10^{-3}	24.14	24.52
90	2.0 ± 0.2	3.18×10^{-5}	11.30	11.04
90	2.0 ± 0.2	7.70×10^{-5}	10.14	10.56
90	2.0 ± 0.2	1.46×10^{-4}	11.56	11.67
90	$2.0~\pm~0.2$	2.85×10^{-4}	13.83	14.17
90	2.0 ± 0.2	6.90×10^{-4}	17.57	16.42
90	2.0 ± 0.2	1.35×10^{-3}	19.23	18.83
90	2.0 ± 0.2	2.48×10^{-3}	21.13	22.60
90	2.0 ± 0.2	5.47×10^{-3}	19.09	18.59
120	$2.0~\pm~0.2$	3.09×10^{-5}	5.64	5.65
120	2.0 ± 0.2	7.46×10^{-5}	10.93	11.39
120	2.0 ± 0.2	1.46×10^{-4}	12.47	11.33
120	2.0 ± 0.2	2.68×10^{-4}	12.51	12.86
120	2.0 ± 0.2	6.69×10^{-4}	12.59	13.91
120	$2.0~\pm~0.2$	1.23×10^{-3}	15.37	14.20
120	2.0 ± 0.2	2.40×10^{-3}	17.54	17.62
120	$2.0~\pm~0.2$	5.47×10^{-3}	18.79	18.89

TABLE VI Experimental and predicted stress values for varying strain rates, grain sizes and temperatures

Temperature (T-273)	L (μm)	$\dot{\varepsilon}$ (s ⁻¹)	σ (psi experimental)	σ (psi predicted)
26	7.5 ± 0.8	3.18×10^{-5}	2780	2786
26	7.5 ± 0.8	7.70×10^{-5}	3550	3477
26	7.5 ± 0.8	1.55×10^{-4}	4005	4117
26	7.5 ± 0.8	2.85×10^{-4}	4530	3139
26	7.5 ± 0.8	6.69×10^{-4}	5110	5082
26	7.5 ± 0.8	1.31×10^{-3}	5780	5392
26	7.5 ± 0.8	2.56×10^{-3}	6140	6667
26	7.5 ± 0.8	6.37×10^{-3}	6730	6606
60	7.5 ± 0.8	3.18×10^{-5}	1810	1828
60	7.5 ± 0.8	7.70×10^{-5}	2310	2322
60	7.5 ± 0.8	1.55×10^{-4}	2780	2795
60	7.5 ± 0.8	2.85×10^{-4}	3140	3082
60	7.5 ± 0.8	6.69×10^{-4}	3770	3811
60	7.5 ± 0.8	1.31×10^{-3}	4005	4389
60	7.5 ± 0.8	2.56×10^{-3}	4260	3792
60	7.5 ± 0.8	6.37×10^{-3}	4530	4659
120	7.5 ± 0.8	3.28×10^{-5}	570	583
120	7.5 ± 0.8	7.93×10^{-5}	870	910
120	7.5 ± 0.8	1.55×10^{-4}	1180	1064
120	7.5 + 0.8	3.03×10^{-4}	1510	1593
120	7.5 + 0.8	7.11×10^{-4}	1810	2027
120	7.5 + 0.8	1.39×10^{-3}	2180	1858
120	7.5 ± 0.8	2.72×10^{-3}	2610	2787
120	7.5 ± 0.8	6.37×10^{-3}	2950	2941
170	$7.5~\pm~0.8$	3.18×10^{-5}	60	56
170	7.5 ± 0.8	7.93×10^{-5}	90	89
170	7.5 ± 0.8	1.55×10^{-4}	140	149
170	7.5 ± 0.8	2.85×10^{-4}	210	206
170	7.5 ± 0.8	7.11×10^{-4}	350	360
170	7.5 ± 0.8	1.39×10^{-3}	540	517

TABLE VI (continued)

Temperature	<i>L</i> (μm)	$\dot{\varepsilon}$ (s ⁻¹)	σ	σ
(1-2/3)			(psi experimental)	(psi predicted)
170	7.5 + 0.8	2.56×10^{-3}	730	749
170	7.5 ± 0.8	9.47×10^{-3}	1420	1417
26	55 ± 0.6	3.18×10^{-5}	2410	2307
26	5.5 ± 0.6	5.16×10^{-5}	3070	2397
20	5.5 ± 0.0	1.55×10^{-4}	3680	3656
26	5.5 ± 0.6	3.03×10^{-4}	4410	4190
26	5.5 + 0.6	7.11×10^{-4}	4980	5346
26	5.5 ± 0.6	1.39×10^{-3}	5620	5912
26	5.5 ± 0.6	2.56×10^{-3}	5970	5412
26	5.5 ± 0.6	5.99×10^{-3}	6740	6930
60	5.5 + 0.6	3.18×10^{-5}	1160	1170
60	5.5 ± 0.6	8.18×10^{-5}	1670	1643
60	5.5 ± 0.6	1.55×10^{-4}	2130	2220
60	5.5 ± 0.6	3.03×10^{-4}	2720	2680
60	5.5 ± 0.6	7.11×10^{-4}	3260	3078
60	5.5 ± 0.6	1.31×10^{-3}	3680	3810
60	5.5 ± 0.6	2.48×10^{-3}	4150	4327
60	5.5 ± 0.6	5.99 × 10	4690	4031
120	5.5 ± 0.6	3.18×10^{-5}	200	220
120	5.5 ± 0.6	7.46×10^{-5}	290	281
120	5.5 ± 0.6	1.46×10^{-4}	390	395
120	5.5 ± 0.6	2.68×10^{-4}	560	5/6
120	5.5 ± 0.6	6.49×10^{-3}	800	000
120	5.5 ± 0.6	2.26×10^{-3}	1400	1614
120	5.5 ± 0.6	4.99×10^{-3}	1670	1608
120	6.6 L 0.6	7.02 10-5	70	(1
170	5.5 ± 0.6	7.93×10^{-4}	70	122
170	5.5 ± 0.6	1.33×10^{-4}	150	130
170	5.5 ± 0.6	7.11×10^{-4}	260	265
170	5.5 ± 0.6 5.5 + 0.6	1.39×10^{-3}	420	442
170	5.5 ± 0.6	2.72×10^{-3}	560	518
170	5.5 ± 0.6	6.37×10^{-3}	860	886
170	5.5 ± 0.6	1.17×10^{-2}	1160	1162
26	2.0 + 0.2	2.99×10^{-5}	390	394
26	2.0 ± 0.2	7.46×10^{-5}	530	526
26	2.0 ± 0.2	1.37×10^{-4}	710	717
26	$2.0~\pm~0.2$	2.77×10^{-4}	970	982
26	2.0 ± 0.2	6.29×10^{-4}	1490	1478
26	2.0 ± 0.2	1.31×10^{-3}	2140	2170
26	2.0 ± 0.2	2.33×10^{-3}	2910	2918
20	2.0 ± 0.2	4.70 × 10	5710	5/10
68	2.0 ± 0.2	3.18×10^{-5}	180	180
68	2.0 ± 0.2	7.70×10^{-3}	250	255
68	2.0 ± 0.2	1.46×10^{-4}	320	320
68 68	2.0 ± 0.2 2.0 + 0.2	2.83×10^{-4}	710	734
68	2.0 ± 0.2 2.0 + 0.2	1.35×10^{-3}	970	997
68	2.0 ± 0.2 2.0 + 0.2	2.48×10^{-3}	1400	1350
68	2.0 ± 0.2	5.64×10^{-3}	2020	2052
90	20 ± 0.2	3.18×10^{-5}	110	114
90	2.0 ± 0.2 2 0 + 0.2	7.70×10^{-5}	170	171
90	2.0 ± 0.2 2.0 + 0.2	1.46×10^{-4}	220	228
90	2.0 ± 0.2	2.85×10^{-4}	300	316
90	$2.0~\pm~0.2$	6.90×10^{-4}	470	440
90	2.0 ± 0.2	1.35×10^{-3}	630	618
90	2.0 ± 0.2	2.48×10^{-3}	910	974
90	2.0 ± 0.2	5.47×10^{-3}	1320	1285
120	2.0 ± 0.2	3.09×10^{-5}	55	55
120	$2.0~\pm~0.2$	7.46×10^{-5}	85	89
120	2.0 ± 0.2	1.46×10^{-4}	120	112
120	2.0 ± 0.2	2.68×10^{-4}	170	170
120	2.0 ± 0.2	6.69×10^{-4}	250	281
120	2.0 ± 0.2 2.0 + 0.2	1.23×10^{-1} 2 40 × 10^{-3}	550	562
120	2.0 ± 0.2 2.0 ± 0.2	5.47×10^{-3}	860	865
		· · · ·		

Residual sum of squares = 3.79×10^6 ; RMS error = 10.68%.

TABLE VII A comparison between the experimental and predicted power consumption per unit volume of material deformed corresponding to different strain rates, grain sizes and temperatures. (Units of power are ksi per second per cubic inch)

Temperature (T-273)	<i>L</i> (μm)	έ (s ⁻¹)	Power (experimental)	Power (predicted)
26	7.5 ± 0.8	3.18×10^{-5}	0.088	0.089
26	7.5 ± 0.8	7.70×10^{-5}	0.273	0.268
26	7.5 ± 0.8	1.55×10^{-4}	0.621	0.638
26	7.5 ± 0.8	2.85×10^{-4}	1.291	0.895
26	7.5 ± 0.8	6.69×10^{-4}	3.419	3.400
26	7.5 ± 0.8	1.31×10^{-3}	7.572	7.064
26	7.5 ± 0.8	2.36×10^{-3}	15./19	17.067
20	7.5 ± 0.8	0.37 × 10	42.870	42.085
60	7.5 ± 0.8	3.18×10^{-5}	0.058	0.058
60 60	7.5 ± 0.8	7.70×10^{-5}	0.178	0.179
60	7.5 ± 0.8	1.55×10^{-4}	0.431	0.455
60 60	7.5 ± 0.8	6.69×10^{-4}	2 522	2 550
60	7.5 ± 0.8	1.31×10^{-3}	5.247	5.750
60	7.5 ± 0.8	2.56×10^{-3}	10.906	9.707
60	7.5 ± 0.8	6.37×10^{-3}	28.856	29.680
120	$7.5~\pm~0.8$	3.28×10^{-5}	0.019	0.019
120	7.5 ± 0.8	7.93×10^{-5}	0.069	0.072
120	7.5 ± 0.8	$1.55 imes 10^{-4}$	0.183	0.165
120	7.5 ± 0.8	3.03×10^{-4}	0.458	0.483
120	7.5 ± 0.8	7.11×10^{-4}	1.287	1.441
120	7.5 ± 0.8	1.39×10^{-3}	3.030	2.582
120	7.5 ± 0.8	2.72×10^{-3}	7.099	7.581
120	7.5 ± 0.8	6.37×10^{-3}	18.792	18.731
170	7.5 ± 0.8	3.18×10^{-5}	0.002	0.002
170	7.5 ± 0.8	7.93×10^{-5}	0.007	0.007
170	7.5 ± 0.8	1.55×10^{-4}	0.022	0.023
170	7.5 ± 0.8	2.85×10^{-4}	0.060	0.059
170	7.5 ± 0.8	7.11×10^{-3}	0.249	0.256
170	7.5 ± 0.8	1.39×10 2.56 $\times 10^{-3}$	1.860	0.718
170	7.5 ± 0.8	2.30×10^{-3} 9.47 × 10 ⁻³	13.447	13 415
26	55 1 0 6	2.18×10^{-5}	0.027	0.076
20	5.5 ± 0.6	3.18×10^{-5}	0.077	0.076
26	5.5 ± 0.6	1.55×10^{-4}	0.570	0.233
26	5.5 ± 0.0 5.5 ± 0.6	3.03×10^{-4}	1.336	1 270
26	5.5 + 0.6	7.11×10^{-4}	3.541	3 801
26	5.5 ± 0.6	1.39×10^{-3}	7.812	8.217
26	5.5 ± 0.6	2.56×10^{-3}	15.283	13.855
26	5.5 ± 0.6	5.99×10^{-3}	40.373	41.512
60	5.5 ± 0.6	3.18×10^{-5}	0.037	0.037
60	5.5 ± 0.6	8.18×10^{-5}	0.137	0.134
60	5.5 ± 0.6	1.55×10^{-4}	0.330	0.344
60	5.5 ± 0.6	3.03×10^{-4}	0.824	0.812
60	5.5 ± 0.6	7.11×10^{-4}	2.318	2.189
60	5.5 ± 0.6	1.31×10^{-3}	4.821	4.991
60	5.5 ± 0.6	2.48×10^{-3}	10.292	10.732
60	5.5 ± 0.6	5.99×10^{-3}	28.093	27.737
120	5.5 ± 0.6	3.18×10^{-5}	0.006	0.007
120	5.5 ± 0.6	7.46×10^{-5}	0.022	0.021
120	5.5 ± 0.6	1.46×10^{-4}	0.057	0.058
120	5.5 ± 0.6	2.68×10^{-4}	0.150	0.154
120	5.5 ± 0.6	1.16×10^{-3}	0.558	0.578
120	5.5 ± 0.6	2.26×10^{-3}	3 164	3 647
120	5.5 ± 0.6 5.5 ± 0.6	4.99×10^{-3}	8.333	8.023
170	55 ± 0.4	7.02 × 10-5	0.004	0.005
170	3.3 ± 0.0 5.5 ± 0.6	1.93×10^{-4}	0.006	0.005
170	5.5 ± 0.6	2.85×10^{-4}	0.010	0.019
170	5.5 ± 0.6	7.11×10^{-4}	0.185	0.037
170	5.5 ± 0.6	1.39×10^{-3}	0.584	0.614
170	5.5 ± 0.6	2.72×10^{-3}	1.523	1.409
170	$5.5~\pm~0.6$	6.37×10^{-3}	5.478	5.646
170	5.5 ± 0.6	1.17×10^{-2}	13.572	13.598
26	$2.0~\pm~0.2$	2.99×10^{-5}	0.012	0.012
26	$2.0~\pm~0.2$	7.46×10^{-5}	0.040	0.039

TABLE VII (continued)

Temperature (<i>T</i> -273)	L (µm)	έ (s ⁻¹)	Power (experimental)	Power (predicted)
26	2.0 ± 0.2	1.37×10^{-4}	0.097	0.098
26	2.0 ± 0.2	2.77×10^{-4}	0.269	0.272
26	2.0 ± 0.2	6.29×10^{-4}	0.937	0.930
26	2.0 ± 0.2	1.31×10^{-3}	2.803	2.843
26	2.0 ± 0.2	2.33×10^{-3}	6.780	6.800
26	$2.0~\pm~0.2$	4.70×10^{-3}	17.437	17.437
68	$2.0~\pm~0.2$	3.18×10^{-5}	0.006	0.006
68	2.0 ± 0.2	7.70×10^{-5}	0.019	0.020
68	2.0 ± 0.2	1.46×10^{-4}	0.047	0.047
68	$2.0~\pm~0.2$	2.85×10^{-4}	0.134	0.132
68	$2.0~\pm~0.2$	6.90×10^{-4}	0.490	0.506
68	2.0 ± 0.2	1.35×10^{-3}	1.310	1.346
68	2.0 ± 0.2	2.48×10^{-3}	3.472	3.348
68	2.0 ± 0.2	5.64×10^{-3}	11.393	11.575
90	2.0 ± 0.2	3.18×10^{-5}	0.004	0.004
90	2.0 ± 0.2	7.70×10^{-5}	0.013	0.013
90	2.0 ± 0.2	1.46×10^{-4}	0.003	0.003
90	$2.0~\pm~0.2$	2.85×10^{-4}	0.086	0.090
90	2.0 ± 0.2	6.90×10^{-4}	0.324	0.304
90	2.0 ± 0.2	1.35×10^{-3}	0.851	0.834
90	2.0 ± 0.2	2.48×10^{-3}	2.257	2.416
90	$2.0~\pm~0.2$	5.47×10^{-3}	7.220	7.027
120	2.0 ± 0.2	3.09×10^{-5}	0.002	0.002
120	2.0 ± 0.2	7.46×10^{-5}	0.006	0.007
120	2.0 ± 0.2	1.46×10^{-4}	0.018	0.016
120	2.0 ± 0.2	2.68×10^{-4}	0.046	0.046
120	2.0 ± 0.2	6.69×10^{-4}	0.167	0.188
120	2.0 ± 0.2	1.23×10^{-3}	0.480	0.444
120	2.0 ± 0.2	2.40×10^{-3}	1.344	1.349
120	2.0 ± 0.2	5.47×10^{-3}	4.704	4.733

Residual sum of squares = 10.39; RMS error = 8.26%

possible. The technique was validated by analysing the experimental data on the tin-lead eutectic alloy generated by Zehr and Backofen [11]. It is also concluded that the technique could be useful for all problems in which a particular parameter depends on a number of independent variables.

Acknowledgement

The authors thank the Head, Computer Centre, Indian Institute of Technology, Madras, for providing computing facilities on the IBM 370/155.

References

- J. W. EDINGTON, K. N. MELTON and C. P. CUTLER, Prog. Mater. Sci. 21 (1976) 61.
- 2. K. A. PADMANABHAN and G. J. DAVIES, "Superplasticity" (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
- 3. P. M. HAZZLEDINE and Y. MOTOHASHI, in "Superplasticity", Proceedings of the International Conference on Superplasticity, edited by B. Baudelet and M. Suery (Editions du C.N.R.S., Paris, 1985) p. 1.1.

- 4. B. P. KASHYAP and A. K. MUKHERJEE, *ibid.*, p. 4.1.
- "Superplastic Forming of Structural Alloys", edited by N. E. Paton and C. H. Hamilton (Met. Soc. AIME, Warrendale, 1982).
- 6. "Superplastic Forming", edited by S. P. Agrawal (Am. Soc. Metals, Metals Park, Ohio, 1985).
- M. KOBAYASHI, M. MIYAGAWA, N. FURUSHIRO, K. MATSUKI and Y. NAKAZAWA, in "Superplasticity", Proceedings of the International Conference on Superplasticity, edited by B. Baudelet and M. Suery (Editions du C.N.R.S., Paris, 1985) p. 12.1.
- "Superplasticity in Aerospace-Aluminium", Proceedings of the International Conference, edited by R. Pearce and L. Kelly (Ashford Press, Curdridge, England, 1985).
- 9. K. A. PADMANABHAN and G. J. DAVIES, J. Mech. Phys. Solids 18 (1970) 261.
- 10. N. R. DRAPER and H. SMITH, "Applied Regression Analysis" (John Wiley, New York, 1966) pp. 151, 163.
- 11. S. W. ZEHR and W. A. BACKOFEN, *Trans. Amer. Soc. Metals* 61 (1968) 300.
- 12. O. L. DAVIES, "Statistical Methods in Research and Production" (Oliver and Boyd, London, 1961) p. 232.

Received 8 February and accepted 24 August 1989